1、分割法 把一個(gè)組合圖形根據(jù)它的特征和已知條件分割成幾個(gè)簡(jiǎn)單的規(guī)則圖形,分別算出各個(gè)圖形的面積,最后求出它們的面積的和。 2、旋轉(zhuǎn)法 把原圖形進(jìn)行一次或多次旋轉(zhuǎn),使它變成我們所熟悉的新圖形,然后再進(jìn)行計(jì)算。 3、割補(bǔ)法 把圖形的某一
本文我們將從以下幾個(gè)部分來(lái)詳細(xì)介紹如何計(jì)算多邊形面積:利用邊心距計(jì)算規(guī)則多邊形面積、用其他公式計(jì)算規(guī)則多邊形面積、求不規(guī)則多邊形面積、參考
你可能知道怎么計(jì)算長(zhǎng)方形和三角形的面積,但更復(fù)雜的多邊形的面積你會(huì)計(jì)算嗎?如果你知道一個(gè)多邊形各個(gè)頂點(diǎn)坐標(biāo)的話,這里有一個(gè)相對(duì)簡(jiǎn)單的方法來(lái)計(jì)算它的面積。部分 1利用邊心距計(jì)算規(guī)則多邊形面積
1、打開(kāi)AutoCAD/天正軟件,以天正2014為例,其他版本均可適用。 2、繪制需要計(jì)算面積的圖形,在這里以簡(jiǎn)單的矩形為例。 3、選中其中任意一個(gè)圖形, 輸入快捷鍵“LI”,就可以得到圖形的面積和周長(zhǎng)信息。 4、使用快捷鍵MO、PR等也可以在左側(cè)信息欄
第1步:規(guī)則多邊形面積的一個(gè)計(jì)算公式是:面積=1/2 x 周長(zhǎng) x 邊心距。
材料/工具:CAD 1、打開(kāi)CAD圖紙,如圖這個(gè)一個(gè)戶(hù)型圖; 2、當(dāng)需要測(cè)量的是規(guī)則圖形時(shí),如圖陽(yáng)臺(tái);可直接輸入命令【rec】矩形命令;即線范圍; 3、選中范圍線(黃線),輸入命令【li】,彈出【編輯】窗口,即得到數(shù)據(jù);面積:4.46平方米;周
這個(gè)公式的解釋如下:
公攤面積具體是這樣算的:1、先算公攤系數(shù),公攤系數(shù)=需要公攤的共有建筑面積總和除以參加公攤的各單元的建筑面積總和;2、通過(guò)公攤系數(shù)計(jì)算,每戶(hù)的公攤面積=公攤系數(shù)×各戶(hù)套內(nèi)建筑面積。
周長(zhǎng):所有邊長(zhǎng)的總和。
1.采用list命令: list命令對(duì)于“直線”命令繪制的圖形,只能讀取線段,能測(cè)出線段長(zhǎng)度。 對(duì)于“多線段”繪制的封閉圖形,能讀取圖形面積,及現(xiàn)成該面域的圖形的周長(zhǎng)。 輸入list命令——回車(chē)。 選擇多線段繪制的圖形。 回車(chē),查看輸出結(jié)果。紅框中顯示
邊心距:多邊形的中心到各邊的垂直距離。
以CAD軟件為例,其中的具體步驟如下: 1、直接打開(kāi)相關(guān)窗口,通過(guò)需要計(jì)算面積的不規(guī)則圖形執(zhí)行BO命令。 2、這個(gè)時(shí)候打開(kāi)新的界面,確定將對(duì)象類(lèi)型設(shè)置為多段線。 3、下一步如果沒(méi)問(wèn)題,就繼續(xù)執(zhí)行LS命令。 4、這樣一來(lái)等出現(xiàn)圖示的結(jié)果以后,即
第2步:獲得多邊形的邊心距。
1、用多段線(命令:PL)描出圖形邊界,閉合后選中剛畫(huà)的多段線,輸入LI,回車(chē),就可以在彈出的窗口看到所圍成圖形的面積和周長(zhǎng)。如圖為例。 2、你如果不想描,可以把原有的線變成多段線,命令PE,然后輸入M(可選多條),然后框選那個(gè)不規(guī)則圖
如果題目讓你用的是邊心距方法,一般來(lái)說(shuō)題里都會(huì)給出邊心距的大小。比如你要計(jì)算一個(gè)正六邊形的面積,該正六邊形邊心距10√3。
提問(wèn) 百度知道 cad中怎樣計(jì)算不規(guī)則圖形的面積 cad中怎樣計(jì)算不規(guī)則圖形的面積 我來(lái)答 3條回答 匿名用戶(hù) 推薦于 2017-10-04 簡(jiǎn)單的方法如下: 1. 輸入命令 region (面域生成命令)回車(chē),選擇你的封閉圖形的所有邊,使你的圖形構(gòu)成面域。 2. 輸
第3步:獲得多邊形周長(zhǎng)。
Public Function CalArea(Rng As Range) As DoubleDim x0 As Double, y0 As Double, x1 As Double, y1 As Double, x2 As Double, y2 As Double, TC As Long, TempArea As DoubleTC = Rng.Rows.CountIf TC < 3 Then MsgBox "坐標(biāo)數(shù)少于3,無(wú)法計(jì)
如果已經(jīng)知道了周長(zhǎng),直接代入公式就可以了,如果是規(guī)則多邊形,且給了邊心距的長(zhǎng)度。則按照下面的方法計(jì)算周長(zhǎng)。
Public Function CalArea(Rng As Range) As DoubleDim x0 As Double, y0 As Double, x1 As Double, y1 As Double, x2 As Double, y2 As Double, TC As Long, TempArea As DoubleTC = Rng.Rows.CountIf TC < 3 Then MsgBox "坐標(biāo)數(shù)少于3,無(wú)法計(jì)
把邊心距想象成三角各為30°、60°和90°的直角三角形上60°角的對(duì)邊。正六邊形是六個(gè)正三角形組成的,邊心距將正三角形分成兩個(gè)上述的直角三角形。
用叉乘(或者叫向量積)設(shè)多邊形的點(diǎn)按某順序依次是(x1,y1),(x2,y2),,(xn,yn)我們?nèi)芜x一個(gè)點(diǎn)和每條邊相連,相鄰的邊做叉乘再除以2(構(gòu)成三角形的有向面積),一般我們選原點(diǎn)(0,0)則面積S=(x1y2-x2y1)/2+(x2y3-x3y2)/2++(xny1-x1yn)/2這里S
在這種直角三角形里,60°對(duì)邊是30°對(duì)邊的√3 倍。如果60°對(duì)邊長(zhǎng)度為10√3 ,則30°對(duì)邊長(zhǎng) x = 10。
首先將不規(guī)則多邊形分解成三角形、正方形等規(guī)則圖形。 然后套用公式,將各個(gè)規(guī)則圖形面積解出。 最后將所有圖形面積進(jìn)行求和計(jì)算即可得出多邊形面積。
上面這個(gè)x是三角形底邊的一般長(zhǎng)度。因此底邊長(zhǎng)度為20, 20乘以6就是正六邊形的周長(zhǎng)120了。
“發(fā)現(xiàn)和研究多邊形的面積” 有了多邊形,自然就有多邊形的面積,不存在“發(fā)現(xiàn)”的問(wèn)題,而是計(jì)算方法問(wèn)題; 研究多邊形的面積,應(yīng)該就是研究計(jì)算多邊形面積的方法吧?這不是什么高深的課題,不規(guī)則多邊形的話,把它劃分成若干個(gè)三角形,然后求這些
第4步:將邊心距和周長(zhǎng)代入公式,如果你用的是上面的“面積=1/2 x 周長(zhǎng) x 邊心距”,就相應(yīng)代入:
#include #include using namespace std; double point[1000000][2],A; int m; double det(double x1,double y1,double x2,double y2) { return x1*y2-x2*y1; } double area() { int i; float temp=0; for(i=0;ipoint[i][0]>>point[i][1]; }prin
面積= 1/2 x 120 x 10√3
直接看面圖層的屬性表,里面有面積字段,這個(gè)就是arcgis計(jì)算好的多邊形面積了。
面積= 60 x 10√3
我們?cè)贑AD制圖的時(shí)候,可能需要查看CAD中繪制圖形的面積。那么該如何查看呢?首先我們要知道計(jì)算圖形面積的快捷鍵“AA”,即“AREA”命令。今天小編就給大家演示一下具體操作方法哦! 步驟一:首先我們先在電腦端下載安裝需要的CAD軟件。如下圖: 步
面積= 600√3
先把多邊形劃分為三角形然后用海式,已知三角形的三個(gè)邊是的邊長(zhǎng)分別是a,b,c,設(shè)p是周長(zhǎng)的一半,就是p=(a+b+c)/2,則三角形的面積為:s=sqrt(p*(p-a)*(p-b)*(p-c) ) n邊形在坐標(biāo)系內(nèi)嗎? 如果在坐標(biāo)系內(nèi)就: 取一個(gè)多邊形其中一個(gè)頂點(diǎn)(x0,
第5步:簡(jiǎn)化答案。
假定每個(gè)小方格為一個(gè)單位一長(zhǎng),S為圖形面積,L為邊界上的格點(diǎn)數(shù),N為內(nèi)部格點(diǎn)數(shù),則有S=2/L N-1。 可以用皮克公式計(jì)算, 面積S和內(nèi)部格點(diǎn)數(shù)目a、邊上格點(diǎn)數(shù)目b的關(guān)系: S=a+ b/2 - 1。 (其中a表示多邊形內(nèi)部的點(diǎn)數(shù),b表示多邊形邊界上的點(diǎn)數(shù),S表
有的題目要求你寫(xiě)出答案的小數(shù)形式。用計(jì)算器算一下,√3 x 600 = 1,039.2,這就是最終答案的一種形式啦。
平行四邊形:把他多出來(lái)的一塊,平移到缺的一邊,補(bǔ)成一個(gè)長(zhǎng)方形,然后根據(jù)長(zhǎng)方形的計(jì)算公式,用底乘高. 三角形:使用兩個(gè)完全相同的三角形,拼成一個(gè)平行四邊形,三角形的面積是這個(gè)平行四邊形的一半,用底乘高,再除以2.圓:把他平均分成若干份,切拼成
部分 2用其他公式計(jì)算規(guī)則多邊形面積
正多邊形內(nèi)角計(jì)算公式與半徑無(wú)關(guān) 要已知正多邊形邊數(shù)為N 內(nèi)角和=180(N-2) 半徑為R 圓的內(nèi)接三角形面積公式:(3倍根號(hào)3)除以4再乘以R方 外切三角形面積公式:3倍根號(hào)3 R方 外切正方形:4R方 內(nèi)接正方形:2R方 五邊形以上的就分割成等邊三角形再算 內(nèi)
第1步:計(jì)算得到正三角形的面積。
n邊形在坐標(biāo)系內(nèi)嗎? 如果在坐標(biāo)系內(nèi)就: 取一個(gè)多邊形其中一個(gè)頂點(diǎn)(x0,y0),從他開(kāi)始向其他的頂點(diǎn)連線,分成(n-2)個(gè)三角形,設(shè)每個(gè)三角形的另兩個(gè)頂點(diǎn)為(x1,y1),(x2,y2),則這個(gè)三角形面積為(|(x1-x0)*(y2-y0)|+|(x2-x0)*(y1-y0)|)/2,多邊形的
用下面這個(gè)公式:面積= 1/2 x 底邊x 高。
多邊形的面積可通過(guò)分割成很多個(gè)三角形面積之和來(lái)求得!通過(guò)多邊形各頂點(diǎn)坐標(biāo)可以求得各邊長(zhǎng),再采用海式,計(jì)算分割后的小三角形的面積。海式如下:假設(shè)在平面內(nèi),有一個(gè)三角形,邊長(zhǎng)分別為a、b、c,三角形的面積S可由以下公式求得: S=
比如底邊10,高為8,則面積是 1/2 x 8 x 10,即 40。
公攤面積具體是這樣算的:1、先算公攤系數(shù),公攤系數(shù)=需要公攤的共有建筑面積總和除以參加公攤的各單元的建筑面積總和;2、通過(guò)公攤系數(shù)計(jì)算,每戶(hù)的公攤面積=公攤系數(shù)×各戶(hù)套內(nèi)建筑面積。
第2步:計(jì)算正方形面積。
你需要有有具體圖形。不同的圖形計(jì)算是不同的。例如正方,邊長(zhǎng)的平方就是面積。邊長(zhǎng)乘4就是周長(zhǎng)。圓的面積派半徑的平方。周長(zhǎng)直徑與派的乘積。
只要知道一條邊邊長(zhǎng),算它的平方就可以了。這和長(zhǎng)方形面積公式(長(zhǎng)x寬)是一個(gè)原理。
1、用多段線(命令:PL)描出圖形邊界,閉合后選中剛畫(huà)的多段線,輸入LI,回車(chē),就可以在彈出的窗口看到所圍成圖形的面積和周長(zhǎng)。如圖為例。 2、你如果不想描,可以把原有的線變成多段線,命令PE,然后輸入M(可選多條),然后框選那個(gè)不規(guī)則圖
如果正方形的邊長(zhǎng)是6,則面積是 6 x 6,或36。
CAD計(jì)算多個(gè)圖形的總面積方法: 打開(kāi)要查詢(xún)面積的多個(gè)圖形的圖層,保證每個(gè)多邊形是閉合的,不要有不相關(guān)的任何多段線等,且多線段不能有自相交的情況: 1.造面,輸入命令region或REG 選中所有多邊形,生成面域,這是會(huì)顯示創(chuàng)建多少個(gè)面域; 2.
第3步:計(jì)算長(zhǎng)方形的面積。
正多邊形內(nèi)角計(jì)算公式與半徑無(wú)關(guān) 要已知正多邊形邊數(shù)為N 內(nèi)角和=180(N-2) 半徑為R 圓的內(nèi)接三角形面積公式:(3倍根號(hào)3)除以4再乘以R方 外切三角形面積公式:3倍根號(hào)3 R方 外切正方形:4R方 內(nèi)接正方形:2R方 五邊形以上的就分割成等邊三角形再算 內(nèi)
將長(zhǎng)乘以寬就得到面積啦。
list命令對(duì)于“直線”命令繪制的圖形,只能讀取線段,能測(cè)出線段長(zhǎng)度。 對(duì)于“多線段”繪制的封閉圖形,能讀取圖形面積,及現(xiàn)成該面域的圖形的周長(zhǎng)。 輸入list命令——回車(chē) 2 選擇多線段繪制的圖形 3 回車(chē),查看輸出結(jié)果。紅框中顯示了圖形的面積和周
如果長(zhǎng)是4寬是3,則4 x 3= 12,得到面積。
第4步:梯形面積公式。
面積= [(上底邊長(zhǎng) + 下底邊長(zhǎng)) x 高]/2。
比如你有個(gè)兩條底邊長(zhǎng)為6和8,且高為10的梯形,則面積就是[(6 + 8) x 10]/2,可以簡(jiǎn)化為 (14 x 10)/2,也就是140/2,得到70。
部分 3求不規(guī)則多邊形面積
第1步:利用不規(guī)則多邊形的各個(gè)頂點(diǎn)的坐標(biāo)來(lái)計(jì)算它的面積。
如果你知道一個(gè)不規(guī)則多邊形的各個(gè)頂點(diǎn)的坐標(biāo),那么它的面積是可求的。
第2步:建立一個(gè)數(shù)組。
以上圖所示的多邊形作為參考,以逆時(shí)針的順序把每個(gè)頂點(diǎn)的橫坐標(biāo)和縱坐標(biāo)列在一個(gè)表格中。請(qǐng)把第一個(gè)點(diǎn)的坐標(biāo)在表格的最后再列一遍,如下圖所示:
第3步:把每個(gè)頂點(diǎn)的橫坐標(biāo)和它下一個(gè)點(diǎn)的縱坐標(biāo)相乘。
把所有的結(jié)果加起來(lái)。
第4步:把每個(gè)頂點(diǎn)的縱坐標(biāo)和它下一個(gè)點(diǎn)的橫坐標(biāo)相乘。
把這些結(jié)果加起來(lái)。
第5步:用步驟3的最終結(jié)果減去步驟4的最終結(jié)果,如下圖所示:82-(-38)=120
第6步:上一步的結(jié)果除以2,得到的就是這個(gè)多邊形的面積:120/2=60個(gè)平方單位。
小提示
如果你把頂點(diǎn)的坐標(biāo)用順時(shí)針而不是逆時(shí)針列出來(lái),你得到的面積會(huì)是一個(gè)負(fù)數(shù)。所以,你可以用這個(gè)方法來(lái)檢查你有沒(méi)有把這個(gè)多邊形的頂點(diǎn)以正確的方式列出來(lái)。
這個(gè)方法計(jì)算的是方向確定的多邊形的面積。如果要計(jì)算一個(gè)有兩條線相交的多邊形的面積,比如一個(gè)八字形,用逆時(shí)針計(jì)算得出的面積減去順時(shí)針計(jì)算得出的面積就可以了。
參考
http://www.mathopenref.com/polygonregulararea.html – 研究資料
擴(kuò)展閱讀,以下內(nèi)容您可能還感興趣。
EXCEL算任意多邊形面積
Public?Function?CalArea(Rng?As?Range)?As?Double
Dim?x0?As?Double,?y0?As?Double,?x1?As?Double,?y1?As?Double,?x2?As?Double,?y2?As?Double,?TC?As?Long,?TempArea?As?Double
TC?=?Rng.Rows.Count
If?TC?3?Then
????MsgBox?"坐標(biāo)數(shù)少于3,無(wú)法計(jì)算面積!"
????CalArea?=?0
????Exit?Function
End?If
x0?=?Rng.Cells(1,?1)
y0?=?Rng.Cells(1,?2)
For?i?=?2?To?TC
????x1?=?Rng.Cells(i?-?1,?1)
????y1?=?Rng.Cells(i?-?1,?2)
????x2?=?Rng.Cells(i,?1)
????y2?=?Rng.Cells(i,?2)
????TempArea?=?TempArea?+?x1?*?y2?-?x2?*?y1
Next
TempArea?=?0.5?*?(TempArea?+?x2?*?y0?-?x0?*?y2)
CalArea?=?TempArea
End?Function
我這函數(shù)是適用于把X坐標(biāo)與Y坐標(biāo)分成兩列寫(xiě)了,以下截圖是使用方法
如果你的坐標(biāo)是XY坐標(biāo)寫(xiě)在同一個(gè)單元格,那么函數(shù)需要改動(dòng)一下
已知任意一個(gè)多邊形的各個(gè)頂點(diǎn)的坐標(biāo),怎么去求該多邊形的面積?(寫(xiě)下代碼和思想--C語(yǔ)言)
用叉乘(或者叫向量積)設(shè)多邊形的點(diǎn)按某順序依次是(x1,y1),(x2,y2),...,(xn,yn)我們?nèi)芜x一個(gè)點(diǎn)和每條邊相連,相鄰的邊做叉乘再除以2(構(gòu)成三角形的有向面積),一般我們選原點(diǎn)(0,0)則面積S=(x1y2-x2y1)/2+(x2y3-x3y2)/2+...+(xny1-x1yn)/2這里S是有向面積 還要取絕對(duì)值程序很簡(jiǎn)單了 如果數(shù)組標(biāo)號(hào)是0到n-1則double s=0;for (int i=0;i
首先將不規(guī)則多邊形分解成三角形、正方形等規(guī)則圖形。
然后套用公式,將各個(gè)規(guī)則圖形面積解出。
最后將所有圖形面積進(jìn)行求和計(jì)算即可得出多邊形面積。
科學(xué)家怎么發(fā)現(xiàn)和研究多邊形的面積?
“發(fā)現(xiàn)和研究多邊形的面積”
有了多邊形,自然就有多邊形的面積,不存在“發(fā)現(xiàn)”的問(wèn)題,而是計(jì)算方法問(wèn)題;
研究多邊形的面積,應(yīng)該就是研究計(jì)算多邊形面積的方法吧?這不是什么高深的課題,不規(guī)則多邊形的話,把它劃分成若干個(gè)三角形,然后求這些三角形面積之和就是了;正多邊形面積計(jì)算有現(xiàn)成的公式,不算復(fù)雜??聪旅妫?/p>
? ??
多邊形求面積C++編程
#include #include using namespace std; double point[1000000][2],A; int m; double det(double x1,double y1,double x2,double y2) { return x1*y2-x2*y1; } double area() { int i; float temp=0; for(i=0;i temp+=det(point[i][0],point[i][1],point[i+1][0],point[i+1][1]); } temp+=det(point[i][0],point[i][1],point[0][0],point[0][1]); return temp/2; } int main() { int i; printf("請(qǐng)輸入多邊形的邊數(shù)m:"); while (scanf("%d",&m)!=EOF) { if (m==0)break; printf("請(qǐng)按順序輸入坐標(biāo)點(diǎn):\n"); for (i=0;i printf("%.1f\n",area()); } return 0; }
}printf("所求 %d 邊形面積為:\n",m);